Clinical Investigation Three-Dimensional Echocardiography in Valvular Heart Disease| Volume 31, ISSUE 11, P1190-1202.e3, November 01, 2018

Comparison between Three-Dimensional Echocardiography and Computed Tomography for Comprehensive Tricuspid Annulus and Valve Assessment in Severe Tricuspid Regurgitation: Implications for Tricuspid Regurgitation Grading and Transcatheter Therapies

Published:September 27, 2018DOI:https://doi.org/10.1016/j.echo.2018.07.007

      Highlights

      • TV imaging is frequently challenging and requires the use of multimodality imaging.
      • Knowledge of methodologic discrepancies is crucial for preprocedural planning.
      • Semiautomated indirect planimetry results in high agreement between TEE and CT.

      Background

      Tricuspid valve imaging is frequently challenging and requires the use of multiple modalities. Knowledge of limitations and methodologic discrepancies among different imaging techniques is crucial for planning transcatheter valve interventions.

      Methods

      Thirty-eight patients with severe symptomatic tricuspid regurgitation were included in this retrospective analysis. Tricuspid annulus (TA) measurements were made during mid-diastole using three-dimensional (3D) transthoracic echocardiographic direct planimetry (TTE_direct) and transesophageal echocardiographic direct planimetry (TEE_direct). Moreover, a semiautomated software was used to generate two-dimensional (2D) and 3D perimeter and area on transesophageal echocardiography (TEE) images. Both methods were compared with direct computed tomographic planimetry (CT_direct) and cubic spline interpolation (CT_indirect). The different TA values were used to calculate the effective regurgitant orifice area and compared with 3D Doppler vena contracta area. For tricuspid valve area TEE_direct and CT_direct as well as CT_indirect were measured.

      Results

      Agreement between TEE and computed tomography (CT) for TA sizing was obtained using semiautomated methods (3D TEE_indirect and CT_indirect). TTE_direct was overall less reliable compared with CT. TA area quantified by TEE_direct was 25% (difference 305 ± 238 mm2, P < .001, R = 0.9) and 19% (166 ± 247 mm2, P < .001, R = 0.89) smaller compared with CT_direct and CT_indirect, respectively. TA perimeter measurements by TEE_direct differed by 11% compared with CT_direct (12 ± 11 mm, P < .001, R = 0.87) and 3D CT_indirect (12 ± 11 mm, P < .001, R = 0.88), and 9% compared with 2D CT_indirect (7 ± 11 mm, P = .002, R = 0.87). TEE_direct of the TA allows the most accurate calculation of effective regurgitant orifice area compared with 3D vena contracta area (−8 ± 62 mm2, P = .50, R = 0.85). Tricuspid valve area by CT_indirect best correlated with conventional TEE_direct (80 ± 250 mm2, P = .11, R = 0.80).

      Conclusions

      In patients with severe tricuspid regurgitation, semiautomated indirect planimetry results in high agreement between TEE and CT for TA sizing and measurement of the tricuspid valve area. TEE_direct of the TA allows the most accurate measurement of diastolic stroke volume for the calculation of regurgitation severity compared with 3D vena contracta area.

      Keywords

      Abbreviations:

      2D (Two-dimensional), 3D (Three-dimensional), CT (Computed tomography), CT_direct (Direct computed tomographic planimetry), CT_indirect (Indirect computed tomographic planimetry (cubic spline interpolation)), EROA (Effective regurgitant orifice area), TA (Tricuspid annulus), TEE (Transesophageal echocardiography), TEE_direct (Transesophageal echocardiographic direct planimetry), TEE_indirect (Transesophageal echocardiographic indirect planimetry), TTE (Transthoracic echocardiography), TTE_direct (Transthoracic echocardiographic direct planimetry), TR (Tricuspid regurgitation), TV (Tricuspid valve), TVA (Tricuspid valve area), VCA (Vena contracta area)
      To read this article in full you will need to make a payment
      ASE Member Login
      ASE Members, full text access to the journal is a member benefit. Login with your ASE credentials to read JASE content.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nath J.
        • Foster E.
        • Heidenreich P.A.
        Impact of tricuspid regurgitation on long-term survival.
        J Am Coll Cardiol. 2004; 43: 405-409
        • Topilsky Y.
        • Nkomo V.T.
        • Vatury O.
        • Michelena H.I.
        • Letourneau T.
        • Suri R.M.
        • et al.
        Clinical outcome of isolated tricuspid regurgitation.
        JACC Cardiovasc Imaging. 2014; 7: 1185-1194
        • Vassileva C.M.
        • Shabosky J.
        • Boley T.
        • Markwell S.
        • Hazelrigg S.
        Tricuspid valve surgery: the past 10 years from the Nationwide Inpatient Sample (NIS) database.
        J Thorac Cardiovasc Surg. 2012; 143: 1043-1049
        • Kim J.B.
        • Jung S.H.
        • Choo S.J.
        • Chung C.H.
        • Lee J.W.
        Clinical and echocardiographic outcomes after surgery for severe isolated tricuspid regurgitation.
        J Thorac Cardiovasc Surg. 2013; 146: 278-284
        • Rodes-Cabau J.
        • Hahn R.T.
        • Latib A.
        • Laule M.
        • Lauten A.
        • Maisano F.
        • et al.
        Transcatheter therapies for treating tricuspid regurgitation.
        J Am Coll Cardiol. 2016; 67: 1829-1845
        • Praz F.
        • George I.
        • Kodali S.
        • Koulogiannis K.P.
        • Gillam L.D.
        • Bechis M.Z.
        • et al.
        Transcatheter tricuspid valve-in-valve intervention for degenerative bioprosthetic tricuspid valve disease.
        J Am Soc Echocardiogr. 2018; 31: 491-504
        • Ancona F.
        • Stella S.
        • Taramasso M.
        • Marini C.
        • Latib A.
        • Denti P.
        • et al.
        Multimodality imaging of the tricuspid valve with implication for percutaneous repair approaches.
        Heart. 2017; 103: 1073-1081
        • Hahn R.T.
        State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation.
        Circ Cardiovasc Imaging. 2016; 9: e005332
        • Hahn R.T.
        • Meduri C.U.
        • Davidson C.J.
        • Lim S.
        • Nazif T.M.
        • Ricciardi M.J.
        • et al.
        Early feasibility study of a transcatheter tricuspid valve annuloplasty: SCOUT trial 30-day results.
        J Am Coll Cardiol. 2017; 69: 1795-1806
        • Addetia K.
        • Yamat M.
        • Mediratta A.
        • Medvedofsky D.
        • Patel M.
        • Ferrara P.
        • et al.
        Comprehensive two-dimensional interrogation of the tricuspid valve using knowledge derived from three-dimensional echocardiography.
        J Am Soc Echocardiogr. 2016; 29: 74-82
        • Zoghbi W.A.
        • Enriquez-Sarano M.
        • Foster E.
        • Grayburn P.A.
        • Kraft C.D.
        • Levine R.A.
        • et al.
        American Society of Echocardiography recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography.
        J Am Soc Echocardiogr. 2003; 16: 777-802
        • van Rosendael P.J.
        • Joyce E.
        • Katsanos S.
        • Debonnaire P.
        • Kamperidis V.
        • van der Kley F.
        • et al.
        Tricuspid valve remodelling in functional tricuspid regurgitation: multidetector row computed tomography insights.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 96-105
        • Dreyfus G.D.
        • Martin R.P.
        • Chan K.M.
        • Dulguerov F.
        • Alexandrescu C.
        Functional tricuspid regurgitation: a need to revise our understanding.
        J Am Coll Cardiol. 2015; 65: 2331-2336
        • Vismara R.
        • Gelpi G.
        • Prabhu S.
        • Romitelli P.
        • Troxler L.G.
        • Mangini A.
        • et al.
        Transcatheter edge-to-edge treatment of functional tricuspid regurgitation in an ex vivo pulsatile heart model.
        J Am Coll Cardiol. 2016; 68: 1024-1033
        • Fukuda S.
        • Saracino G.
        • Matsumura Y.
        • Daimon M.
        • Tran H.
        • Greenberg N.L.
        • et al.
        Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study.
        Circulation. 2006; 114: I492-I498
        • Khalique O.K.
        • Hamid N.B.
        • White J.M.
        • Bae D.J.
        • Kodali S.K.
        • Nazif T.M.
        • et al.
        Impact of methodologic differences in three-dimensional echocardiographic measurements of the aortic annulus compared with computed tomographic angiography before transcatheter aortic valve replacement.
        J Am Soc Echocardiogr. 2017; 30: 414-421
        • Mak G.J.
        • Blanke P.
        • Ong K.
        • Naoum C.
        • Thompson C.R.
        • Webb J.G.
        • et al.
        Three-dimensional echocardiography compared with computed tomography to determine mitral annulus size before transcatheter mitral valve implantation.
        Circ Cardiovasc Imaging. 2016; 9: e004176
        • Song H.
        • Kim M.J.
        • Chung C.H.
        • Choo S.J.
        • Song M.G.
        • Song J.M.
        • et al.
        Factors associated with development of late significant tricuspid regurgitation after successful left-sided valve surgery.
        Heart. 2009; 95: 931-936
        • Vaquerizo B.
        • Spaziano M.
        • Alali J.
        • Mylote D.
        • Theriault-Lauzier P.
        • Alfagih R.
        • et al.
        Three-dimensional echocardiography vs. computed tomography for transcatheter aortic valve replacement sizing.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 15-23
        • Ng A.C.
        • Delgado V.
        • van der Kley F.
        • Shanks M.
        • van de Veire N.R.
        • Bertini M.
        • et al.
        Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography.
        Circ Cardiovasc Imaging. 2010; 3: 94-102
        • van Rosendael P.J.
        • Kamperidis V.
        • Kong W.K.
        • van Rosendael A.R.
        • van der Kley F.
        • Ajmone Marsan N.
        • et al.
        Computed tomography for planning transcatheter tricuspid valve therapy.
        Eur Heart J. 2017; 38: 665-674
        • Hahn R.T.
        • Zamorano J.L.
        The need for a new tricuspid regurgitation grading scheme.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 1342-1343
        • Zoghbi W.A.
        • Adams D.
        • Bonow R.O.
        • Enriquez-Sarano M.
        • Foster E.
        • Grayburn P.A.
        • et al.
        Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance.
        J Am Soc Echocardiogr. 2017; 30: 303-371
        • Schofer J.
        • Bijuklic K.
        • Tiburtius C.
        • Hansen L.
        • Groothuis A.
        • Hahn R.T.
        First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve.
        J Am Coll Cardiol. 2015; 65: 1190-1195
        • Latib A.
        • Agricola E.
        • Pozzoli A.
        • Denti P.
        • Taramasso M.
        • Spagnolo P.
        • et al.
        First-in-man implantation of a tricuspid annular remodeling device for functional tricuspid regurgitation.
        JACC Cardiovasc Interv. 2015; 8: e211-e214
        • Malasa M.
        • Werner N.
        • Nickenig G.
        • Hammerstingl C.
        Transcatheter tricuspid valve repair in a patient with isolated functional tricuspid valve regurgitation.
        Eur Heart J. 2016; 37: 855
        • Lurz P.
        • Besler C.
        • Kiefer P.
        • Ender J.
        • Seeburger J.
        Early experience of the trialign system for catheter-based treatment of severe tricuspid regurgitation.
        Eur Heart J. 2016; 37: 3543
        • Schueler R.
        • Hammerstingl C.
        • Werner N.
        • Nickenig G.
        Interventional direct annuloplasty for functional tricuspid regurgitation.
        JACC Cardiovasc Interv. 2017; 10: 415-416
        • Perlman G.
        • Praz F.
        • Puri R.
        • Ofek H.
        • Ye J.
        • Philippon F.
        • et al.
        Transcatheter tricuspid valve repair with a new transcatheter coaptation system for the treatment of severe tricuspid regurgitation: 1-year clinical and echocardiographic results.
        JACC Cardiovasc Interv. 2017; 10: 1994-2003
        • Nickenig G.
        • Kowalski M.
        • Hausleiter J.
        • Braun D.
        • Schofer J.
        • Yzeiraj E.
        • et al.
        Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge MitraClip technique.
        Circulation. 2017; 135: 1802-1814
        • Fam N.P.
        • Ho E.C.
        • Zahrani M.
        • Samargandy S.
        • Connelly K.A.
        Transcatheter tricuspid valve repair with the PASCAL system.
        JACC Cardiovasc Interv. 2018; 11: 407-408
        • Mangieri A.
        • Montalto C.
        • Pagnesi M.
        • Jabbour R.J.
        • Rodes-Cabau J.
        • Moat N.
        • et al.
        Mechanism and implications of the tricuspid regurgitation: from the pathophysiology to the current and future therapeutic options.
        Circ Cardiovasc Interv. 2017; 10: e005043
        • Taramasso M.
        • Hahn R.T.
        • Alessandrini H.
        • Latib A.
        • Attinger-Toller A.
        • Braun D.
        • et al.
        The international multicenter TriValve Registry: which patients are undergoing transcatheter tricuspid repair?.
        JACC Cardiovasc Interv. 2017; 10: 1982-1990